

Device independent quantum random number generation

<u>Yang Liu</u>, Qi Zhao, Ming-Han Li, Jian-Yu Guan, Yanbao Zhang, Bing Bai, Weijun Zhang, Wen-Zhao Liu, Cheng Wu, Xiao Yuan, Hao Li, W. J. Munro, Zhen Wang, Lixing You, Jun Zhang, Xiongfeng Ma, Jingyun Fan, Qiang Zhang, Jian-Wei Pan

University of Science and Technology of China

27th Aug, QCrypt2018, Shanghai

I. Introduction

Randomness in Nature

Classical

Random Number Generation

Algorithm Based

FUNCTION Uniform : REAL: VAR

Z, k : INTEGER; BEGIN k := si DIV 53668; si := 40014 * (si - k * 53668) - k * 12211; IF si < 0 THEN si := si + 2147483563;

k := s2 DIV 52774; s2 := 40692 * (s2 - k * 52774) - k * 3791; IF s2 < 0 THEN s2 := s2 + 2147483399;

Z := s1 - s2; IF Z < 1 THEN Z := Z + 2147483562;

Uniform := Z * 4.656613E-10 END

FIGURE 3. A Portable Generator for 32-bit Computers

Thermal Noise Based

Quantum Random Number

Random Number Generator (RNG)

- True Randomness: unpredictable to any adversary
- The principle of generating random numbers
 - Pseudo Random Number Generators (PRNG):
 - Intrinsically predictable, uniformly distributed
 - Quantum Random Number Generators (QRNG):
 - Inherent randomness (un-predicable), uniformly distributed
- Practical issues in QRNG
 - Device imperfections, components deviating, classical noises, side channels, adversary attacks (vulnerable)
 - Requires real-time monitoring and shielding (impractical)

Device Independent Quantum Random Number Generation (DIQRNG)

- QRNGs: Trusted device, Semi-DI, DIQRNG
 - Goal: Generate randomness without relying on physical implementations
- DIQRNG (Self-testing QRNG)
 - Output randomness is certified independent of device implementations

DIQRNG – Theory Requirement

• DIQRNG against quantum adversary

Do not assume independent and identical distribution
 Consider classical and quantum side information
 Produce random bits with non-vanishing rate
 Should noise-tolerant, and efficient for finite-data size

- With entropy accumulation theorem
 - ✓ do not use the i.i.d. assumption
 - ✓ consider the quantum side information
 - ✓ produce randomness approaching i.i.d. rate

F. Dupuis, O. Fawzi, and R. Renner, arXiv:1607.01796 (2016).
R. Arnon-Friedman, R. Renner, and T. Vidick, arXiv:1607.01797 (2016)

DIQRNG – Experiments

- Based on (loophole-free) Bell's inequality test
 - Close detection loophole High System Efficiency
 - Prohibit communications between the measurements
 - Measurement settings independent of entanglement creation
 Space-like Separation
 Proper Shielding
- Related DIQRNG experiments:
 - DIQRNG against classical adversary P. Bierhorst, et.al., Nature 556, 223 (2018).
 - DIQRNG closing detection loophole Y. Liu, et.al., PRL **120**, 010503 (2018).
 - Randomness extraction with continuous down conversion source

Lijiong Shen, et.al., ArXiv:1805.02828 (2018). Also in the next talk.

University of Science and Technology of China

II. Theory

DIQRNG Theory (brief review)

- Entanglement pairs distribution and measurement For each experimental trial *i* :
 - Generation trial: $x_i = 0$ and $y_i = 0$ with probability: 1-q
 - Test trial (Bell test): $x_i (y_i) \in \{0, 1\}$ with probability: q
 - CHSH game value: $J_i = 1$ if $a_i \oplus b_i = x_i \cdot y_i$ and 0, otherwise.

DIQRNG Theory (brief review)

• CHSH game value for *n* trials:

$$\bar{J} = \frac{1}{n} \sum_{i=1}^{n} J_i - 3/4.$$

 $H_{\min}^{\varepsilon_s}(\mathbf{AB}|\mathbf{XY}E) \ge n \cdot R_{opt}(\varepsilon_s, \varepsilon_{\mathrm{EA}}, \omega_{\mathrm{exp}})$

to extract $H_{\min}^{\varepsilon_s}(\mathbf{AB}|\mathbf{XY}E) - t_e$ random numbers that is $\varepsilon_s + \varepsilon_{EA} + 2^{-t_e}$ close to uniform distribution

Randomness Extraction

Based on entropy accumulation theorem (EAT) R. Arnon-Friedman, R. Renner, and T. Vidick, arXiv:1607.01797 (2016), Nat Commun **9**, 459 (2018)

$$\bar{J} = J_{A_1B_1} + J_{A_1B_2} + J_{A_2B_1} + J_{A_2B_2} - 3/4$$
With:
$$\begin{cases} J_{A_1B_1} = (N_{ab=00|A_1B_1} + N_{ab=11|A_1B_1})/N, \\ J_{A_1B_2} = (N_{ab=00|A_1B_2} + N_{ab=11|A_1B_2})/N, \\ J_{A_2B_1} = (N_{ab=00|A_2B_1} + N_{ab=11|A_2B_1})/N, \\ J_{A_2B_2} = (N_{ab=01|A_2B_2} + N_{ab=10|A_2B_2})/N. \end{cases}$$

$$g(p) = \begin{cases} 1 - h\left(\frac{1}{2} + \frac{1}{2}\sqrt{16\frac{p}{q}\left(\frac{p}{q} - 1\right) + 3}\right) & \frac{p}{q} \in [0, \frac{2+\sqrt{2}}{4}]\\ 1 & \frac{p}{q} \in [\frac{2+\sqrt{2}}{4}, 1] \end{cases}$$

$$f_{\min}(p, p_t) = \begin{cases} g(p) & p \le p_t \\ \frac{d}{dp} g(p)|_{p_t} \cdot p + (g(p_t) - \frac{d}{dp} g(p)|_{p_t} \cdot p_t) & p > p_t \end{cases}$$

$$R(p, p_t, \varepsilon_s, \varepsilon_e) = f_{\min}(p, p_t) - \frac{1}{\sqrt{n}} 2(\log 13 + \frac{d}{dp}g(p)|_{p_t})\sqrt{1 - 2\log(\varepsilon_s \cdot \varepsilon_e)}.$$

$$R_{opt}(\varepsilon_s, \varepsilon_e) = \max_{\frac{3}{4} < \frac{p_t}{q} < \frac{2 + \sqrt{2}}{4}} R(\omega_{exp} \cdot q - \delta_{est}, p_t, \varepsilon_s, \varepsilon_e).$$

DIQRNG Theory (brief review)

- <u>Do not assume</u> the inner working of devices
- <u>Assume</u> the law of quantum mechanic is correct
- <u>Assume</u> A's/B's devices are in secure lab
 - Adversaries cannot access their measurement outcomes
- <u>Assume</u> the input random numbers are uniform & secure
- <u>Assume</u> classical post-processing is trusted

University of Science and Technology of China

III. Experiment

University of Science and Technology of China

DIQRNG Experiment -- System Efficiency

DIQRNG Experiment -- System Efficiency

• Experimental test of system efficiency

$$\eta = \eta^{sc} \times \eta^{so} \times \eta^{fiber} \times \eta^m \times \eta^{det}$$

Tab: System Efficiency		Alice	Bob
Source Collection (Coupling)	η^{sc}	93.9%	94.2%
Source Optics (Coating)	η^{so}	95	5.9%
Fiber Transmittance	η^{fiber}	99	9.0%
Measurement (Coupling & Coating	g) η^m	94.8%	95.2%
Single Photon Detector	η^{det}	93.2%	92.2%
System Efficiency	η	78.8%±1.9%	78.5%±1.5%

DIQRNG Experiment -- Quantum State

- Quantum State:
- Measurement Bases:

$$cos(22.05^{\circ}) |HV\rangle + sin(22.05^{\circ}) |VH\rangle$$

$$a_0 = -83.5^{\circ}, a_1 = -119.4^{\circ}$$

$$b_0 = 6.5^{\circ}, b_1 = -29.4^{\circ}$$

Optimized for the setup

• State Fidelity ~99.0%

State Tomography (Imaginary)

DIQRNG Experiment -- Spatial Separation

Spatial separation between

- Measurement at A(B) and setting choice/measurement outcome at B(A) $\begin{cases}
 (|SA| + |SB|)/c > T_E - (L_{SA} - L_{SB})/c + T_{QRNG1} + T_{Delay1} + T_{PC1} + T_{M2}, \\
 (|SA| + |SB|)/c > T_E + (L_{SA} - L_{SB})/c + T_{QRNG2} + T_{Delay2} + T_{PC2} + T_{M1},
 \end{cases}$
- Entanglement creation (S) and setting choice A/B

 $\begin{cases} |SA|/c > L_{SA}/c - T_{Delay1} - T_{PC1} \\ |SB|/c > L_{SB}/c - T_{Delay2} - T_{PC2} \end{cases}$

- Characterize the delay
 - On site free-space measure
 - Optical reflection
 - Measure Cable length

DIQRNG Experiment -- Optimized Intensity

- Theoretical Model: $J \approx J_B + P(1)J_{n=1} + P(2)J_{n=2} + P(3)J_{n=3}$
 - Vacuum: No contribution
 - 1-Photon: CHSH Violation
 - 2-Photon: No Violation
- Optimize CHSH with Intensity
 - Simulate Poisson Source with 0~3 pairs case
 - Consider all possible results

TABLE V. Possible events for single photon pair.

parties	1	2	3	4	5	6	7	8	9
Alice and Bob	0,0	0,1	$_{0,u}$	1,0	1,1	1,u	u,u	u,u	u,u

DIQRNG Experiment -- Extraction

FFT Acceleration of Toeplitz Matrix Multiplication

University of Science and Technology of China

IV. Result

DIQRNG Experiment -- Result

- $n = 6.895 \times 10^{10}$ experimental trials in 95.77 hours.
- CHSH violation $\overline{J} = 2.757 \times 10^{-4}$
- Final random bits 6.2469×10^7 or 181.2 bpswith uniformity within 10^{-5}

DIQRNG Experiment -- Result

• Hypothesis test (p-value) of local realism

The null hypothesis: The experimental results are explainable by local realism. p value: the max probability according to local realism that the statistic takes a value as extreme as the observed one.

Prediction-based-ratio (PBR)

Upper bound of the p-value w/o i.i.d.

$$P_{LR} = 10^{-204792}$$

The small p value strongly reject LHV.

Hypothesis test of no signaling

$$P_{NS} = 1$$

No evidence of anomalous signaling

Passes NIST uniformity test

Statistical tests	P value	Proportion	Result
Frequency	0.17828	1.000	Success
BlockFrequency	0.73992	0.983	Success
CumulativeSums	0.25360	1.000	Success
Runs	0.13469	1.000	Success
LongestRun	0.67178	1.000	Success
Rank	0.04872	1.000	Success
\mathbf{FFT}	0.77276	0.967	Success
NonOverlappingTemplate	0.08440	0.990	Success
OverlappingTemplate	0.63712	1.000	Success
Universal	0.96430	0.983	Success
ApproximateEntropy	0.37814	0.983	Success
RandomExcursions	0.22430	0.990	Success
${\it Random Excursions Variant}$	0.50920	0.991	Success
Serial	0.10250	1.000	Success
LinearComplexity	0.13469	1.000	Success

Outlook

- DI-Random Number Expansion
- DI-Random Number Amplification
- Looking for <u>Device-Independent Protocols</u>

Shanghai Branch, University of Science and Technology of China: <u>Yang Liu</u>, Ming-Han Li, Jian-Yu Guan, Bing Bai, Wen-Zhao Liu, Cheng Wu, Jun Zhang, Jingyun Fan, Qiang Zhang, Jian-Wei Pan

Tsinghua University: Qi Zhao, Xiao Yuan, Xiongfeng Ma

Shanghai Institute of Microsystem and Information Technology: Weijun Zhang, Hao Li, Lixing You, Zhen Wang

NTT Basic Research Laboratories Yanbao Zhang, W. J. Munro National Key R&D Program of China

Thank You!